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Abstract. ,Static and dynamic properties of the Potts model on the simple cubic lattice with nearest
neighbor ±Ĵ-interaction are obtained from Monte Carlo simulations in a temperature range where full
thermal equilibrium still can be achieved (T/Ĵ ≥ 0.6). For a lattice size L = 16, in this range finite size
effects are still negligible, but the data for the spin glass susceptibility agree with previous extrapolations
based on finite size scaling of very small lattices. While the static properties are compatible with a zero
temperature transition, they certainly do not prove it. Unlike the Ising spin glass, the decay of the time-
dependent order parameter is compatible with a simple Kohlrausch function, q(t) ∝ exp[−(t/τ )y(T )], while
a power law prefactor cannot be distinguished. The Kohlrausch exponent y(T ) decreases from y ≈ 0.64 at
T/Ĵ = 1.1 to y ≈ 0.37 at T/Ĵ = 0.6, however. The relaxation time τ is compatible with the exponential
divergence postulated by McMillan for spin glasses at their lower critical dimension, ln τ ∝ T−σ but the
exponent σ that can be extracted (σ ≈ 2.5) still differs significantly from the theoretical value, σ = 3. Thus
the present results support the conclusion that the Potts spin glass in d = 3 dimensions differs qualitatively
from the Ising spin glass.

PACS. 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 75.50.Lk Spin
glasses and other random magnets – 02.70.Lq Monte-Carlo and statistical methods

1 Introduction

Spin glasses still are interesting model systems that elu-
cidate how the interplay of quenched disorder and frus-
tration lead to new types of ordering phenomena in con-
densed matter [1–4]. Nevertheless, many aspects of spin
glasses are not yet well understood: while there is some
consensus among researchers (though the evidence is not
beyond doubt) that the Ising spin glass with short range
forces has a non-zero freezing temperature Tf and hence its
lower critical dimension dl < 3, the nature of the phase ap-
pearing for T < Tf still is heavily debated [4]. In contrast,
it has been suggested [5–9] that the three-state Potts glass
with short range forces is at its lower critical dimension,
with Tf = 0 in d = dl = 3. This claim is rather surpris-
ing – one could have expected that all spin glass models
with a discrete number of spin states behave qualitatively
similar (in mean field theory indeed the properties of the
Ising spin glass and the Potts spin glass with p = 3 states
are qualitatively similar, while for p > 4 a first order glass
transition is predicted [5,6]). Main evidence for this con-
clusion that dl = 3 for the short range p = 3 Potts glass
has been the lack of an intersection point for the cumu-
lant of the spin glass order parameter when studied as
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function of temperature for different (small) lattice linear
dimensions L [5–9]. In retrospect, however, this evidence
seems rather weak, since no such intersection point is also
found for the p = 3 infinite range Potts glass [10], where
one knows exactly that Tf is nonzero [5,6,11]!

In view of these problems, a direct analysis of the prop-
erties of the Potts glass with short range interactions that
does not rely on finite size scaling [12] seems rewarding:
Choosing a lattice with linear dimension L exceeding by
far the spin glass correlation length ξSG(T ) for the temper-
atures T that are studied, one can ignore finite size effects
and study ξSG(T ), the spin glass susceptibility and the dy-
namic behavior of the model and try to extrapolate these
quantities to lower temperatures. Such an analysis, com-
plementary to finite size scaling, has proven to be very
powerful and useful in the case of the d = 3 Ising spin
glass [13,14]. While a related approach has been tried for
the d = 3 Potts glass with nearest-neighbor random Gaus-
sian interaction [15], the present paper is the first attempt
of this type for the d = 3± J Potts glass. In this context,
we note that (i) it is unclear whether at the lower critical
dimension different distributions of the random exchange
couplings yield equivalent results, and (ii) reference [15]
has applied significantly less statistical effort than nowa-
days is possible (choosing L = 12 and 80 random bond
configurations for runs that went at most up to 106 at-
tempted Monte Carlo steps per spin [15], while the present
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effort is about two orders of magnitude larger, see below).
In addition, the present work uses the technique of Bhatt
and Young [16] to check whether the initial states included
in the Monte Carlo average are well enough equilibrated,
and thus unlike reference [15] does not suffer from possibly
insufficient thermal equilibrium.

In Section 2 we briefly summarize the model, the sim-
ulation technique, and define the quantities that are re-
corded. Section 3 describes the results for static proper-
ties (including also linear and both second order and third
order nonlinear “ferromagnetic” susceptibilities [17]). Sec-
tion 4 then presents a discussion of the decay of the time-
dependent Edwards-Anderson [18] order parameter q(t)
and associated relaxation time [19]. Particular attention is
paid to a test of the pertinent predictions of McMillan [20]
for the dynamics of spin glasses at the lower critical dimen-
sionality. Finally, Section 5 summarizes our conclusions.

2 Model and simulation techniques

As is well known [21,22], in the Potts model an energy

Ĵij is won if two sites i, j are in the same state while
no energy occurs if they are in different states, allowing
ni = 1, 2, ..., p different states for each site i,

H = −
∑
〈i,j〉

Ĵijδni,nj − ĥ
∑
i

δni,1. (1)

Here we have specialized already to the case of a near-
est neighbor interaction, so the symbol 〈i, j〉 means over
all nearest neighbor pairs on the simple cubic lattice is
summed once, and we have added a uniform field ĥ that
singles out one state (which we label as ni = 1). In or-
der to clearly bring out the symmetries of the model, it
is convenient to choose the “simplex representation” [23],
i.e. the p states ni correspond to (p− 1)-dimensional unit
vectors pointing towards the λ’th corner of a p-simplex:

S
(λ)
i · S

(λ′)
j =

pδλλ′ − 1

p− 1
; λ, λ′ = 1, ..., p. (2)

For p = 3 the space of the three vectors S
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(2)
i , S

(3)
i

representing the states ni = 1, 2, 3 at site i is two-dimen-
sional and their x, y coordinates are denoted as {Sui } =(
S1
i , S

2
i

)
. These vectors then read as follows
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−
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)
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In the simplex representation the Hamiltonian looks like
that of a (p− 1) vector model,

H = −
∑
〈i,j〉

JijSi · Sj − h
∑
i

Syi , (4)

but one must keep in mind that the Si in equation (4) are
the discrete vectors of equation (3) and thus H lacks spin
inversion symmetry (except for p = 2, which is equivalent
to the Ising case). Since for p = 3 we simply have δni,nj =
2

3

(
Si · Sj +

1

2

)
, Jij =

2

3
Ĵij and h =

2

3
ĥ. Note that Jij

is chosen as +J and −J with equal probability, while h is
usually taken to be zero.

Next we define the quantities that will be discussed
in this work. The correlation function that measures spin
glass-type correlations is defined as usual [1,6]

g(r) =
[
〈Si · Sj〉

2
T

]
av
, r = |Ri −Rj |. (5)

Here 〈...〉T denotes the standard thermal average, imply-
ing an average with the Boltzmann weight exp(−H/kBT ),
while [...]av is the average over the quenched disorder, i.e.
a simple sampling over a number N of realizations of the
random bond configurations ±J in the lattice. We typi-
cally choose N = 128−200. Obviously, the random bond
averaging can be trivially done in parallel, and hence the
use of parallel computers has turned out to be very ad-
vantageous for the present study (a CONVEX SPP1200
was used). At a single workstation (Hewlett Packard HP
9000/735) the total computing time would have exceeded
9 months of CPU time.

From g(r) one can define a “second moment” correla-
tion length ξSG(T ) as follows,

ξ2
SG(T ) =

1

6

∫
d3r r2g(r)∫
d3r g(r)

; (6)

the denominator in equation (6) is nothing else but the
spin glass susceptibility χSG, N being the total number of
sites (N = L3),

χSG =
1

N

∑
i,j

[
〈Si · Sj〉

2
T

]
av
, (7)

since
∫

d3r stands symbolically for a summation over all
(vectorial) distances Ri −Rj on the lattice.

In addition, we are also interested in ferromagnetic
susceptibilities defined from the expansion of my(h, T ) in
powers of h/kBT ,

my(h, T )=
1

N

∑
i

[〈Syi 〉T,h]av = [〈my〉T,h]av , (8)

my(h, T )=χ1(h/kBT )+ χ2(h/kBT )2+ χ3(h/kBT )3 +...
(9)

Note that in conventional magnetic systems spin inver-
sion symmetry implies χ2 ≡ 0, while in the Potts glass
lack of spin inversion symmetry implies that χ2 indeed is
nonzero [17]. While Haas et al. [17] attempted to obtain
χ1, χ2 and χ3 from calculations for a set of values for
nonzero h and a numerical fit of my(h, T ) vs. h curves
to the expansion, equation (9), it turned out that this
procedure is numerically rather unstable, depending on
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the range of values for h that is fitted: if this range is
too large, even higher order terms than written down in
equation (4) contribute, while if this range is too small the
nonlinear terms hardly have any effect. Therefore, in the
present study we implemented the alternative approach in
terms of the fluctuation relations for h = 0

χ1 = N
[
〈m2

y〉T − 〈my〉
2
T

]
av
, (10)

χ2 =
1

2!
N2
{[
〈m3

y〉T − 3〈m2
y〉T 〈my〉T + 2〈my〉

3
T

]
av

}
,

(11)

χ3 =
1

3!
N3{[〈m4

y〉T − 4〈my〉T 〈m
3
y〉T + 12〈m2

y〉T 〈my〉
2
T

− 3〈m2
y〉

2
T − 6〈my〉

4
T ]av}. (12)

Remember that in magnetic spin glasses (where χ2 ≡ 0
due to spin reserval symmetry) the standard linear sus-
ceptibility χ1 remains finite at the spin glass transition,
while both χ3 and χSG diverge [1,2]. While χSG is con-
venient for computer simulations, it is not accessible ex-
perimentally, and so the entire experimental evidence that
the freezing transition of spin glasses is caused by a static
phase transition rests on the observed divergence of χ3

[1,2]. By analogy, for Potts glasses one then also expects
that χ1 remains finite at a possible spin glass transition,
while higher order susceptibilites might diverge [6]. Not-
ing that the discrete states of the Potts glass may phys-
ically represent discrete orientations of a linear molecule
in a diluted (or randomly mixed) molecular crystal [6], χ2

and χ3 then get the physical meaning of higher order ori-
entational susceptibilities. Unfortunately, unlike magnetic
systems such response functions are not directly accessi-
ble in any experiment known to us. Gratifyingly, these re-
sponse functions can be probed indirectly via the rotation-
translation coupling, applying a shear field that orients the
molecule in a preferred direction indeed a divergent non-
linear response function seems to have been observed [24].

Finally, the dynamic quantity that will be studied is
the time-dependent Edwards-Anderson order parameter
q(t), which is nothing else but the time-displaced autocor-
relation function of the Potts spins,

q(t) =
1

N

∑
i

[〈Si(0) · Si(t)〉T ]av . (13)

Note that as usual in Monte Carlo sampling dynamics is
associated to the model in terms of the master equation
that describes the Markov process involved [1,25]. In the
present work the “heat bath” algorithm is used, and the
unit of time is one attempted Monte Carlo step per Potts
spin (MCS), while units of temperature are 3/2 J/kB

{remember J = 2/3 Ĵ , cf. Eqs. (1, 4)}. In the following
we take kB ≡ 1.

Before turning to a description of our results, we re-
call the equilibration criteria that have been used, follow-
ing Bhatt et al. [7–9,16]. For this purpose, one carries out
Monte Carlo runs always for two identical replicas 1, 2 of
the model with an identical bond configuration, consider-

ing the overlap q̃µν(t) of their spin configuration:

q̃µν(t) =
1

N

N∑
i=1

Sµi,1(t)Sνi,2(t). (14)

We form a mean square spin glass order parameter from
equation (14) defining

q̃2(t) =

[∑
µ,ν

{q̃µν(t)}2
]

av

, (15)

and compare this quantity with the overlap of the spin
configuration at time t in one replica with the spin con-
figuration in the same replica at time 2t,

q̂2(t) =

[∑
µ,ν

{q̂µν(t)}2
]

av

, (16)

where

q̂µν(t) =
1

N

N∑
i=1

Sµi,1(t)Sνi,1(2t). (17)

Choosing at t = 0 an initial spin configuration at random,
it is clear that q̃2(0) = 0, while q̃2 = 1. On the other hand,
both expressions converge to the same quantity in thermal
equilibrium, namely,

q̃2(t→∞) = q̂2(t→∞) =
χSG

N
· (18)

Thus, anticipating that the relaxation of these quanti-
ties towards equilibrium is monotonic in time, q̃2(t) ap-
proaches the limit in equation (18) from below, while q̂2(t)
approaches it from above. This expectation is indeed con-
sistent with observation, and for the temperatures studied
(T ≥ 0.6 in the units specified above) t = 300 000 MCS
turned out safely sufficient for equilibration. As a conse-
quence, runs of a length 4.3 million MCS were carried out,
and the first 300 000 MCS omitted from the averaging.

3 Static properties

We start with a discussion of the correlation function and
correlation length ξSG(T ), since for all what follows it is
crucial that our choice L = 16 (in comparison with simu-
lations of “pure” systems without quenched disorder this
is still rather small! [26]) does in fact satisfy ξSG(T )� L.
Figure 1 shows a semilog plot of the spin glass correla-
tion function g(r) versus distance r — straight lines on
this plot hence are indicative of an exponential decay,
g(r) ∝ exp(−r/ξSG(T )). It is seen that at all tempera-
tures studied g(r) has decayed to very small values after
a few lattice spacings. Clearly, such small correlations are
hard to estimate with meaningful accuracy (to improve
the accuracy in particular a larger sample of random bond
configurations would be necessary).
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Fig. 1. Plot of the spin glass correlation function g(r) (Eq.
(5)) as a function of distance r. Six different temperatures are
distinguished by different symbols.

Fig. 2. Log-log plot of the spin glass correlation length ξSG(T )
versus temperature.

This “noise” of g(r) for such intermediate values of
r make an application of equation (6) difficult, since the
summation over distances requires an upper cutoff, and
the integration weight d3r r2 magnifies the noise near the
cutoff, a straightforward use of equation (6) thus leads to
somewhat imprecise results. We found that a reasonable
compromise is to fit an exponential function to the data
in Figure 1 for r ≥ 3 and T ≤ 0.8 and use this fitted
function to estimate the contribution of r ≥ 3 in equation
(6), while for r < 3 the data are explicitly used in equa-
tion (6). In this way rather stable results for ξSG(T ) are
obtained, which are shown in Figure 2 (these data differ
only slightly from ξSG(T ) defined from a simple fit of an
exponential function to all the data on g(r) [27]). While

Fig. 3. Plot of χSG(T ) vs. T . Circles are present data (us-
ing L = 16), while broken curves show data of Scheucher and
Reger [8]: L = 6 (lower broken curve) and L = 10 (upper bro-
ken curve). Full curve is the extrapolation to L =∞, obtained
in reference [8] from finite size scaling methods. Note that in
reference [8] no calculations were carried out at T = 0.65, and
thus we have connected the results of reference [8] for T = 0.7
and T = 0.6 by straight lines for simplicity: thus the small
discrepancy at T = 0.65 presumably is not relevant.

for isotropic orientational glass models related data for
ξSG(T ) were compatible with a straight line on a log-log
plot of ξSG(T ) vs. T [28], this is not the case here, at least
over the temperature range shown. Now the scenarios that
one wishes to distinguish are [6–9,20]

ξSG(T ) ∝


|T − Tg|−ν , for d > dl,

exp(C/T σ), for d = dl,

T−ν0 , for d < dl.

(19)

Unfortunately, the values of ξSG(T ) in the temperature
range shown are rather small, and increase by a factor
of about 2.5 only: thus it is possible to fit these data
to the first two alternatives about equally well: but then
Tg ≤ 0.3, i.e. a factor of two lower than the lowest temper-
ature used, therefore, this cannot be taken as an evidence
for a nonzero glass transition temperature Tg. Even the
third alternative, ξSG(T ) ∝ T−ν0, is not ruled out, de-
spite of the curvature in Figure 2, since it is possible that
the asymptotic regime where such a power law holds is
only reached for T ≤ 0.6. In view of these ambiguities, no
statement about the exponents ν or σ or ν0 in equation
(19) is possible, of course.

Fortunately, the data for the spin glass susceptibil-
ity χSG(T ) are better behaved (Fig. 3) and in excellent
agreement with previous work [8] on smaller lattices. As
expected, the data are compatible with the exponential
divergence [20]

χSG(T ) ∝ exp(c/T σ) (20)
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Fig. 4. Log-log plot of ln(χSG(T )) versus T , to provide evi-
dence for equation (20), which is a straight line at this plot.
The present data are indicated by crosses with horizontal error
bars (errors are smaller than the size of the crosses!). Broken
curves indicate data of reference [8] for L = 6 (lower curve)
and L = 10 (upper curve), respectively, while full straight line
is the extrapolation obtained in reference [8] from finite size
scaling methods.

where c is a constant and the exponent σ = 2 (Fig. 4).
While the data presented so far are compatible with

reference [8] and thus confirm that the analysis presented
by Scheucher and Reger [8] is correct, we present in Fig-
ure 5 the quantities χ1, χ2 and χ3 (Eqs. (10-12)) that have
not been considered in this reference. Studying the mag-
netic equation of state, Haas et al. [17] were the first to
consider these quantities but they obtained qualitatively
similar results for χ1 only: for χ2 they predicted a decrease
with decreasing temperature, with a change of sign at a
nonzero temperature, unlike the monotonic increase found
here. Clearly, the origin of this qualitative discrepancy re-
quires further study. While there is no problem obtaining
χ1 from fluctuation relations, the huge error bars for χ2

and χ3 in Figures 5b, c indicate that the straightforward
use of equations (11, 12) is not a very useful method ei-
ther, and one has to seek for improved estimators with a
reduced variance to make further progress. While a quan-
titative comparison with the results of Haas et al. [17] is
not possible, since the latter authors considered a Gaus-
sian bond distribution rather than the ±J distribution, a
qualitatively different temperature dependence of χ2 and
χ3 clearly is very unexpected.

4 Dynamic properties

Apart from early work on the dynamics of the Potts glass
with Gaussian bond distribution [15], analysis of the de-
cay of q(t) for Potts glasses has found no attention. We
present here data for q(t) in Figure 6 which are of similar
statistical quality as the data of Ogielski [14] for the ±J

(a)

(b)

(c)

Fig. 5. Ferromagnetic susceptibilities χ1 (a), χ2 (b) and χ3 (c)
plotted vs. temperature. Horizontal broken lines show limiting
values of these susceptibilites for T → ∞, as derived by Haas
et al. [17] (note the different normalization of the field chosen
here).
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(a)

(b)

(c)

Fig. 6. (a) Log-log plot of q(t) vs. t (in units of MCS), for the
temperatures (from left to right) T = 1.1, 1.0, 0.9, 0.8, 0.7, 0.65
and 0.60. At late times some examples of error bars are indi-
cated. (b) Linear plot of q(t) vs. the logarithm of time, for the
same temperatures as in part (a). (c) Log-log plot of − ln(q(t))
vs. t, for the same temperatures as in (a). Broken straight lines
indicate fits to the Kohlrausch stretched exponential function,
equation (21).

Ising spin glass. Figure 6a clearly shows that a power law
decay is never a good description of the data over an ex-
tended regime of time, unlike the Ising spin glass, where
a power law takes over for T near Tg, the temperature
of the spin glass transition. This different behavior may
again reflect the fact that Tg = 0 for the Potts glass, un-
like the Ising spin glass, however. A linear plot of q(t) vs.
time on a logarithmic scale (Fig. 6b) shows that over an
intermediate time scale the data perhaps are compatible
with a logarithmic decay — but the extent of this regime is
not large enough to be really suggestive. Finally, Figure 6c
tests the ubiquitous Kohlrausch law,

q(t) ∝ exp{−(t/τ)y}. (21)

While equation (21) certainly can describe the data over
one or two decades in time, at early times there are clear
deviations, and certainly equation (21) is not exact but
only a convenient interpolation formula.

If one takes equation (21) seriously, it is of interest to
consider the temperature dependence of the parameters τ
and y (Fig. 7). Similar to previous results for the Gaussian
Potts glass [15] and isotropic quadrupolar glasses [28], one
observes a dramatic increase of τ and a distinct decrease
of y as the temperature is lowered. In fact, it is conceiv-
able (though the data certainly do not “prove” it) that
y(T ) ∝ T at low temperatures.

As always in glassy systems [1–6], the analysis of the
precise temperature dependence of the relaxation time
is difficult (Fig. 8). In order to not only rely on the
Kohlrausch fit, we have also considered a relaxation time
defined from the integral of q(t),

τav =

∫ ∞
0

q(t)dt. (22)

Figure 8a compares the temperature dependence of τ and
τav on a log-log plot. It is seen that the general trend is
similar, and since the uncertainties of the fit to equation
(21) may affect the accuracy of τ , we concentrate on τav

in the following. The rather pronounced curvature on the
log-log plot in Figure 8a makes a power law divergence
of τ and τav at zero temperature clearly rather unlikely.
However, allowing a nonzero Tg it is possible to obtain
“good” straight lines on the log-log plot (Fig. 8b). But it is
evident that there is no clear preference for one particular
value of Tg; although linearity is best for Tg = 0.45 the
range of the temperature distance, 0.23 ≤ 1−Tg/T ≤ 0.6,
is so remote from Tg, that this “agreement” with a power
law cannot be taken as a proof of the latter. This point is
re-iterated by Figure 8c, where the prediction of McMillan
[20], for the dynamic of spin glass systems at the lower
critical dimension,

ln τ ∝ T−(σ+1) = T−3, T → 0, (23)

is tested. It is found that the data are nicely compatible
with a relation ln τ ∝ T−z (or ln τav ∝ T−z

′
respectively),

but the exponents z, z′ do not have the theoretical value
z = z′ = σ + 1 = 3 but are slightly smaller. Of course,
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(a)

(b)

Fig. 7. (a) Plot of the relaxation time τ , as extracted from
the fit of the data to equation (21) in Figure 6c, as function
of temperature. (b) Plot of the exponent y, as extracted from
the fit of the data in Figure 6c to equation (21), as function
of temperature. Straight line indicates that y(T ) is compatible
with a linear temperature dependence.

we can by no means rule out that equation (23) will be
observed if data at lower temperatures actually would be-
come available. However, it is slightly disturbing that in
a temperature regime where the result for the static spin
glass susceptiblity {lnχSG ∝ T−σ = T−2 [20]} already is
verified the relaxation time does not yet agree with the
theoretical prediction, equation (23).

(a)

(b)

(c)

Fig. 8. (a) Log-log plot τ (circles) and τav (crosses) vs. temper-
ature. (b) Log-log plot of τa vs. 1−Tg/T , for 7 trial choices of Tg

as indicated. (c) Log-log plot of ln τ (circles) and ln τav (crosses)
vs. temperature. Straight lines indicate relations ln τ ∝ T−z,

ln τav ∝ T−z
′
, with exponents z = 2.6, z′ = 2.37.
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5 Discussion

The present work has filled a gap in the research on Potts
spin glasses, by presenting a largescale Monte Carlo study
of well-equilibrated samples in the high temperature re-
gime for the ±J three-dimensional three-state Potts glass.
Our static results for the spin glass correlation length and
spin glass susceptibility confirm a previous finite size scal-
ing study of Scheucher and Reger [8], that has suggested
a zero temperature transition with an exponential diver-
gence, χSG ∝ exp(cT−σ) with σ = 2, although a glass
transition at a low but non-zero temperature (described
by conventional power laws) still cannot be ruled out.

We also discuss the susceptibilities χ1, χ2, χ3 describ-
ing the response to a uniform field, but huge fluctuations
prevent us from making any statements on the nature of
possible divergences of these response functions as T → 0.
More efficient sampling techniques for these quantities are
highly desirable but not yet available.

The behavior of the time-dependent Edwards-
Anderson order parameter q(t) is qualitatively similar
to the Ising spin glass [14] and isotropic quadrupolar
glasses [28] but there are differences in quantitative de-
tail. We find that q(t) is compatible with a Kohlrausch
stretched exponential, but do not find a power law prefac-
tor. The Kohlrausch exponent seems to decrease strongly
with decreasing temperature. The relaxation times are
clearly incompatible with a simple power law divergence
at zero temperature, unlike the isotropic quadrupolar
glasses [28], but a power law divergence at a nonzero
Tg cannot be ruled out, and is a similar good fit to the
data as the McMillan [20] prediction ln τ ∝ T−z, if in
the latter relation z is adjusted as an effective exponent
(about 20% smaller than the theoretically expected value
z = σ + 1 = 3).

Thus the present work has completed the current pic-
ture of Potts glasses somewhat, but open questions clearly
remain!
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